5,956,479

39

the Compiler 42 will automatically generate an indirection.
The linker will catch the indirect reference and provide a
local address which will be patched with the external
address at load time.

Data-to-Code & Data-to-Data

Example (Data-to-Code): void (*pfn)() = Foo;

Example (Data-to-Data): int& pi = i;

Since both of these references require absolute addresses,
they will be handled during loading. The patching of data
references at load time will be handled just like the patching
of external references.

FIG. 42 shows what happens in each type of reference. All
of these cases show the internal usage case. If an external
library references these same components, this library will
receive several GetExportAddress() calls at load time. In
response to the GetExportAddress(), a library will return the
internal linkage area address for functions, and the real
address for data. This allows the functions to move around
while the library is loaded.

Linkage Areas

The internal linkage area is completely homogeneous
(each entry is: JMP address). The external area has different
types of entries. A normal function call will have a jump
instruction in the linkage area, while a virtual function call
will have a thunk that indexes into the virtual table. Pointers
to member functions have a different style of thunk.

While the invention has been described in terms of a
preferred embodiment in a specific programming
environment, those skilled in the art will recognize that the
invention can be practiced with modification within the
spirit and scope of the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is as follows:

1. In a computer system having a memory, a display, a
program counter with a value, a program consisting of a set
of named components stored in a database in the memory,
each component including an attribute indicating whether
the component data is valid, source code for implementing
the component, and object code for executing the
component, and a debugger for monitoring execution of the
program during debugging to detect a program execution
halt, a method for dynamically generating symbolic debug-
ging information, comprising the steps of:

(a) when program execution halts during debugging,
using the program counter value to locate a component
in the database;

(b) checking the attribute of the located component to
determine whether symbolic debugging information
relating the object code to the source code is valid;

(c) generating the symbolic debugging information by
recompiling the source code of the located component
when the symbolic debugging information is not valid;

(d) associating valid symbolic debugging information
with the located component; and

(e) using the debugger to continuing debugging the pro-
gram.

2. The method of claim 1, wherein step (a) comprises the

steps of:

(al) using the program counter value to address a cache
memory; and

(a2) obtaining a component name from the cache memory.

3. The method of claim 2, wherein step (a) comprises the
steps of:

(a3) converting the program counter value into a compo-

nent name when the cache memory does not contain a

10

15

20

25

30

35

40

45

50

55

60

65

40

component name at a location addressed by the pro-
gram counter value; and

(a4) storing the component name determined in step (a3)
in the cache memory.

4. The method of claim 1, wherein step (¢) comprises the

step of:

(c1) using the compiler to create, as part of the symbolic
debugging information, at least one map which indi-
cates a relation between the component object code and
the component source code; and

(c2) associating the at least one map with the located
component.

5. The method of claim 1, wherein each computer pro-
gram is constructed as a collection of components with
dependencies between components, each component having
an interface and an implementation and wherein all compo-
nent dependencies are from component interfaces and
wherein step (c) comprises the step of:

(c3) recompiling source code for the located component
and all components which depend on the located com-
ponent.

6. The method of claim 1, wherein step (¢) comprises the

step of:

(c4) updating symbolic debugging information which was
originally created by compiling all of the components.

7. The method of claim 1, further comprising the step of:

(f) executing a browser program with the symbolic debug-
ging information generated in step (c) to present source
code from a located component on the display when
program execution halts during debugging in response
to an exception generated by the program.

8. The method of claim 7, wherein step (f) comprises the

step of:

(f1) applying a program thread which generated the
exception as an input to the browser program.

9. Apparatus for dynamically generating symbolic debug-
ging information for use in a computer system having a
memory, a display, a program counter with a value, a
program consisting of a set of named components stored in
a database in the memory, each component including an
attribute indicating whether the component data is valid,
source code for implementing the component, and object
code for executing the component, and a debugger for
monitoring execution of the program to detect a program
execution halt during debugging, the apparatus comprising:

(a) means responsive to a program execution halt during
debugging, for using the program counter value to
locate a component in the database;

(b) means responsive to the attribute of the located
component for determining whether symbolic debug-
ging information relating the object code to the source
code is valid;

(c) means for controlling a compiler to generate the
symbolic debugging information by recompiling the
source code of the located component when the sym-
bolic debugging information is not valid;

(d) means for associating valid symbolic debugging infor-
mation with the located component; and

(e) means for controlling the debugger to continuing
debugging the program.

10. The apparatus of claim 9, wherein the means for using
the program counter value to locate the component com-
prises a cache memory for storing at least one component
name and means for using the program counter value to
address the cache memory to obtain a component name from
the cache memory.

